
Prediction of software development faults in PL/SQL files

using neural network models

Tong-Seng Quah, Mie Mie Thet Thwin

Abstract

Database application constitutes one of the largest and most important software domains in the world. Some classes or modules in such

applications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware in

these classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the software development

faults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically validated by analyzing their

relationship with the probability of fault detection across PL/SQL files. SQL metrics were extracted from Oracle PL/SQL code of a

warehouse management database application system. The faults were collected from the journal files that contain the documentation of all

changes in source files. The result demonstrates that these measures may be useful in predicting the fault concerning with database accesses.

In our study, General Regression Neural Network and Ward Neural Network are used to evaluate the capability of this set of SQL metrics in

predicting the number of faults in database applications. 

Keywords: Structured Query Language metrics; Software prediction; Neural network; Software metrics

1. Introduction

Software metrics have been used as a quantitative means

of assessing software development process as well as the

quality of software products. Many researchers have studied

the correlation between software design metrics and the

likelihood of occurrence of software faults. They classified

the software modules (or classes) as not fault-prone or fault-

prone modules (or classes) and predicted the number of

faults in modules (or classes) using various software metrics

[1–12,14–16,18,20].

Although database applications are essential to every

organization, studies on product measures for static

database operation statements are rarely found in literature.

Structured Query Language (SQL) is the standard language

for relational database management systems. The relation-

ship between the fault occurrence for database applications

and SQL metrics is studied in this paper. We defined SQL

metrics that have strong relationship with faults and then

performed empirical validation for these metrics.

In our study, we analyzed the fault reports of develop-

ment projects involving database applications using

PL/SQL code and found that faults are related to the

number of SQL statements and the complexity of SQL

statements. SQL commands are mainly composed in the

PL/SQL files to perform database operations. SQL com-

plexity can be measured using product metrics such as the

number of table names in from-clauses: the number of join-

queries criteria in where-clauses.

A variety of statistical techniques are used in software

quality modeling. Models are often based on statistical

relationships between measures of quality and measures of

software metrics. However, relationships between static

software metrics and quality factors are often complex and

nonlinear, limiting the accuracy of conventional

approaches. Artificial neural networks are adopt at modeling

nonlinear functional relationships that are difficult to model

with other techniques, and thus, are attractive for software

quality modeling. In our previous studies, we predicted

software development faults using Object-Oriented Design

Metrics and neural network [16,20]. In these studies, we

found that neural network models had better predict

accuracy than regression models. In this study, the General



Regression Neural Network (GRNN) and Ward Neural

Network are used to predict faults in PL/SQL codes using

SQL metrics.

2. SQL metrics

Database application constitutes one of the largest and

most important software domains in the world [17]. Some

classes or modules in those applications are responsible for

handling database accesses. We analyzed the fault reports of

these classes or modules and found that faults are related to

the number of SQL statements, which are invoked from a

class or module; and the complexity of SQL statements. For

example, retrieving wrong database records. In such cases,

developers need to check and modify the corresponding

SQL statements to correct the error. To be able to predict the

number of such faults for these classes or modules are very

important in developing database applications.

The following SQL metrics are defined and used in this

study. Metrics having weak relationships with fault

occurrences, such as the number of Data Definition

Language (DDL) commands and Data Control Language

(DCL) commands are omitted in this study.

3. Neural network modeling

The first neural network architecture that we have chosen

is the Ward Network [21]. It is a backpropagation network

that has three slabs (slab2, slab3 and slab4) in the hidden

layer (Fig. 1). Hidden layers in neural network are known as

feature detectors. A slab is a group of neurons. Each slab in

the hidden layer has a different activation function, this

offers three ways of viewing the data. We use linear function

for the output slab (slab5). Hyperbolic tangent (tanh)

function is used in one slab of hidden layer (slab3) because

it is better for continuous valued outputs especially if the

linear function is used on the output layer. Gaussian

function is used in another slab of the hidden layer

(slab2). This function is unique, because unlike the others,

it is not an increasing function. It is the classic bell shaped

curve, which maps high values into low ones, and maps

mid-range values into high ones. Gaussian complement is

used in the third slab of the hidden layer (slab4) to bring out

meaningful characteristics in the extremes of the data. The

learning rate and momentum are set to 0.1 and initial weight

is set to 0.3 in this study.

Another neural network architecture that we have chosen

is the GRNN. GRNN is based on a one-pass learning

algorithm with a highly parallel structure. GRNN is a

powerful memory based network that could estimate

continuous variables and converge to the underlying

regression surface. The strength of GRNN is that it is able

to deal with sparse data effectively. Specht [19] shown that

the algorithm in GRNN is able to provide a smooth

transition from one observed value to another, even with

sparse data in a multidimensional measurement space.

GRNN applications are able to produce continuous valued

outputs. For GRNN networks, the number of neurons in the

hidden layer is usually the number of patterns in the training

set because each pattern in the training set is represented by

one neuron. The primary advantage of GRNN is the speed at

which the network can be trained. There are no training

parameters such as learning rate and momentum in back-

propagation network, but there is a smoothing factor that is

applied after the network is trained. The smoothing factor

allows the GRNN to interpolate between patterns or spectra

in the training set. The smoothing factor determines how

tightly the network matches its predictions to the data in the

training patterns. For GRNN networks, the smoothing factor

must be greater than 0 and usually range from 0.01 to 1 with

good results.

4. Data collection

The experiment data are collected from a set of

warehouse management applications that is developed

using C, JAM and PL/SQL languages. This set of

applications has more than a thousand source files of C,

JAM and PL/SQ codes and uses Oracle database. The

warehouse system has been customized and used by many

companies. Data access faults were collected from the

journal files that contain the documentation of all changes in

source files such as status of module, start date, end date,

developer, nature of changes, etc. Data on six SQL metrics

(Table 1) were extracted from 108 PL/SQL files of the

above-mentioned warehouse application using metric

Fig. 1. Ward Neural Network.

Table 1

Proposed SQL metrics

SQL metrics Description

NSC Number of select commands

NIUO Number of insert/update operations

NDO Number of delete operations

NT Number of table in from-clause

NSCC Number of search condition criteria in where-clause

NJQ Number of join-queries criteria



extraction tool that we developed using VCþþ incorporat-

ing MKS LEX and YACC utilities as embedded languages.

5. Experiment

Firstly, each data pattern was examined for erroneous

entries, outliers, blank entries and redundancy. We standar-

dized the SQL metrics to a mean of zero and a variance of

one for each metric. Many raw software metrics have

incompatible units of measures. This step converts all of

them to a unit of one standard variation. After standardizing

SQL metric data, we performed principal component

analysis (PCA). It is a standard technique to identify the

underlying, orthogonal dimensions that explain relations

between the variables in the data set. The varimax rotation

method was adopted in this study. Table 2 presents the

relationship between the original SQL metrics and the

domain metrics, based on experiment data extracted from

the warehouse management applications.

PCA identified two sets of principle components (PCs),

which capture 58.34 and 25.39%, respectively, of the data

set variance, which gives a representation of about 84% of

the population. Table 2 shows the coefficient measure for

each rotated component, with coefficients larger than 0.8 set

in boldface. The Eigen value, the percentage of data set each

PC describes, and the cumulative variance percentage are

also shown. Based on the analysis of the coefficients

associated with each metric within each of the two sets of

rotated components, the PCs are interpreted as follows:

The first set of principle components shows high

correlation between metrics NT, NSCC, NSC and NJQ.

However, NT is a better representative because it is less

correlated with the other components. The second set of

principle components shows high correlation between

metrics NIUO and NDO. We therefore chose NT and

NIUO metrics for further analysis.

We divided our data into training, testing, and production

sets using 3:1:1 ratio, which is the commonly accepted

proportion used by most neural network researchers. We

extracted 21 patterns for the test set and another 21 patterns

for the production set. The remaining 66 patterns are used as

training set. We used the production data set to evaluate

model performance.

The dependent variable was the number of software

faults and the independent variables were the two principal

components identified above (out of the six SQL metrics).

We used both Ward Network and GRNN Network for

predicting faults. Table 3 shows the summary of Ward

Network design whereas Table 4 shows the structure of

GRNN network used.

For GRNN network, there were 108 neurons in hidden

layer, two neurons in input layer and one neuron in output

layer. In our experiment smoothing factor 0.075 was used.

6. Experimental results

To measure the goodness of fit of the model, we use the

coefficient of multiple determination (R 2), the coefficient of

correlation (r), r 2, mean square error, mean absolute error,

minimum absolute error and maximum absolute error.

Tables 5 and 6 show the values that are obtained from the

two neural network models used for our experiments.

Table 7 shows the experimental result of the production

set. The correlation of the predicted change and the

observed change is represented by the coefficient of

correlation (r). The r value of 0.8586 in Ward Neural

Network and 0.7096 in GRNN network represents

high correlations for cross-validation. The number of
Table 2

Principle components

SQL metrics PC1 PC2

NSC 0.962 0.116

NIUO 0.029 0.872

NDO 0.052 0.859

NT 0.979 0.101

NSCC 0.967 20.038

NJQ 0.823 0.008

Eigenvalues 3.500 1.524

% Variance 58.336 25.394

Cumulative % variance 58.336 83.730

Table 3

Ward Neural Network architecture used

Slab1 Slab2 Slab3 Slab4 Slab5

No. of neurons 2 3 3 3 1

Table 4

GRNN architecture used

Input layer Hidden layer Output layer

No. of neurons 2 108 1

Table 5

Experimental result of training set

Ward Net GRNN

R 2 0.8159 0.7717

R 0.9093 0.8889

r 2 0.8269 0.7901

Mean squared error 1.731 2.145

Mean absolute error 0.832 0.858

Min. absolute error 0.004 0

Max. absolute error 4.187 5.673



observations is 21. The significance level of a cross-

validation is indicated by p value. A commonly accepted

p value is 0.05 [13]. In our experiment, a two tailed

probability p values is less than 0.0003 in both cross-

validations. This shows a high degree of confidence for the

successful validations. The results clearly indicate close

relationship between metrics NSC, NIUO, NDO, NT,

NSCC and NJQ (independent variables) and predictable

faults in software applications (dependent variable).

7. Conclusions

We studied the relationship between fault occurrence for

database applications and SQL metrics. First we proposed

SQL metrics that have strong relationship with faults and

then performed empirical validation for these metrics. We

analyzed the fault reports kept by project teams of

developing database applications using PL/SQL code and

found that faults are related to the number of SQL

statements and the complexity of SQL statements. The

relationship between the fault occurrence for database

applications and SQL metrics has been empirically

validated in this study. From the results presented above,

our proposed SQL metrics in this study proved to be useful

in predicting faults in PL/SQL files.

These findings paved the way for future research into

using neural network for predicting software maintainabil-

ity. In addition, our research results also provide a new

avenue for software project manger to determine the

readiness of software under development.

8. Future plan

We intend to extend this investigation with wide range of

applications and various types of data access techniques.

Our future research direction aims to estimate software

readiness by using metrics for defect tracking. To estimate

readiness, three factors will be considered in our future

study: (1) how many faults are remaining in the programs;

(2) how many changes are required to correct the errors; and

(3) how much time is required in changing the programs.

Software metrics concerning with polymorphism measures,

inheritance related measures, complexity measures,

cohesion measures, coupling measure, dynamic memory

allocation measure, SQL measures and size measures will

be used.

Acknowledgements

We gratefully acknowledged CAIB GmbH, Murrhardt,

Germany for providing us with the software development

data used in our research.

References

[1] A. Mounir Boukadoum, H.A. Sahraoui, H. Lounis, Machine

learning approach to predict software evolvability using fuzzy

binary trees, International Conference on Artificial Intelligence, 2001.

[2] L.C. Briand, J.W. Daly, J.K. Wust, A unified framework for coupling

measurement in object-oriented systems, IEEE Transactions on

Software Engineering 25 (1) (1999) 91–121.

[3] L.C. Briand, W.L. Melo, J. Wust, Assessing the applicability of fault-

proneness models across object-oriented software projects, IEEE

Transactions on Software Engineering 28 (2002) 706–720.

[4] L. Briand, J. Wüst, J.W. Daly, V. Porter, Exploring the relationships

between design measures and software quality in object-oriented

systems, Journal of Systems and Software 51 (2000) 245–273.

[5] M. Cartwright, M. Shepperd, An empirical investigation of object

oriented software system, IEEE Transactions on Software Engineer-

ing 26 (2000) 786–796.

[6] K. El Emam, A primer on object-oriented measurement, Proceedings

of the Seventh International Software Metrics Symposium, 2001, pp.

185–187.

[7] K. El Emam, S. Benlarbi, N. Goel, S.N. Rai, The confounding effect

of class size on the validity of object-oriented metrics, IEEE

Transactions on Software Engineering 27 (2001) 630–650.

[8] El Emam, W. Melo, C.M. Javam, The prediction of faulty classes

using object-oriented design metrics, Journal of Systems and

Software, Elsevier Science 56 (1) (2001) 63–75.

[9] L. Etzkorn, H. Delugach, Towards a semantic metrics suite for object-

oriented design, Proceedings of 34th International Conference on

Technology of Object-Oriented Languages and Systems, 2000, pp.

71–80.

[10] N.E. Fenton, N. Ohlsson, Quantitative analysis of faults and failures in

a complex software system, IEEE Transactions on Software

Engineering 26 (2000) 797–814.

Table 6

Experimental result of test set

Ward net GRNN

R 2 0.3754 0.1247

R 0.6881 0.5530

r 2 0.4735 0.3058

Mean square error 1.779 2.493

Mean absolute error 0.653 0.936

Min. absolute error 0.019 0.288

Max. absolute error 5.605 6.317

Table 7

Experimental result of production set

Ward Net GRNN

R 2 0.6889 0.3993

r 0.8586 0.7096

r 2 0.7372 0.5035

Mean square error 0.518 1.000

Mean absolute error 0.552 0.718

Min. absolute error 0.004 0.106

Max. absolute error 1.845 2.830

t-Value 5.389928 4.389928

P-value 0.0001 0.0003



[11] F. Fioravant, A metric framework for the assessment of object-

oriented systems, Proceedings of IEEE International Conference on

Software Maintenance, 2001, pp. 557–560.

[12] F. Fioravanti, P. Nesi, A study on fault-proneness detection of object-

oriented systems, Fifth European Conference on Software Mainten-

ance and Reengineering, 2001, pp. 121–130.

[13] J.E. Frenund, F.J. Williams, B.M. Perles, The Elementary Business

Statistics—The Modern Approach, Prince-Hill, 1993.

[14] T.L. Graves, A.F. Karr, J.S. Marron, H. Siy, Predicting fault incidence

using software change history, IEEE Transactions on Software

Engineering 26 (7) (2000) 653–661.

[15] T.M. Khoshgoftaar, E.B. Allen, Z. Xu, Predicting testability of

program modules using a neural network, Proceedings of the Third

IEEE Symposium on Application-Specific Systems and Software

Engineering Technology, 2000, pp. 57–62.

[16] J.T.S. Quah, M.M. Thet Thwin, Prediction of software readiness using

neural network, Proceedings of First International Conference on

Information Technology and Applications (ICITA 2002), Australia,

25–28 Nov (2002).

[17] G. Ramarkrishnan, Database Management Systems, Third ed.,

McGraw-Hill, New York, 2003.

[18] R. ReiBing, Towards a model for object-oriented design measure-

ment, Proceedings of the Fifth International ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering,

2001, pp. 71–84.

[19] D.F. Specht, A general regression neural network, IEEE Transactions

on Neural Networks 2 (6) (1991) 568–576.

[20] M.M. Thet Thwin, T.-S. Quah, Application of neural network for

predicting software development faults using object-oriented

design, Proceedings of Ninth International Conference on Neural

Information Processing, Singapore, 18–22 Nov 2002, vol. 5, 2002,

pp. 2312–2316.

[21] NeuroShell 2 Help, Ward Systems Group Inc., http://www.

wardsystems.com

http://www.wardsystems.com
http://www.wardsystems.com

	Prediction of software development faults in PL/SQL files using neural network models
	Introduction
	SQL metrics
	Neural network modeling
	Data collection
	Experiment
	Experimental results
	Conclusions
	Future plan
	Acknowledgements
	References


